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Attract-Two-dimensional hyperbolic heat ~ond~lction problems are investigated by using the hybrid 
numerical scheme. The thermal wave of such problems propagates with a finite velocity. Thus numerical 
oscillations in the vicinity of the thermal wave front can be observed, and a hybrid numerical method is 
presented, to reduce these oscillatory magnitudes. This method is that the time-dependent terms in the 
governing differential equations are removed by using the Laplace transform technique, and then the 
control volume method is used to discretize the space domain in the transform domain. The key of the 
present method is the selection of the shape functions. Various examples with the irregular geometry are 

illustrated. 

INTRODUCTION 

WITH THE advent of science and technology involving 
very low temperatures near absolute zero, extremely 
short transient duration and very high heat fluxes, 
some investigators found that the heat propagation 
velocity of such problems becomes finite. Peshkov 
[ 1] experimentally determined the velocity of thermal 
wave in helium II to be 19 m s- ’ at a temperature of 
1.4 K. Human [2] found that the thermal propagation 
becomes dominant for short-pulse laser heating. 
Maurer and Thompson [3] also found that if the sur- 
face heat fluxes are greater than the order IO’ W cm- ‘, 
the Fourier heat Aux model will fail. To account for 
the phenomena involving the finite propagation 
velocity of the thermal wave, the classical Fourier 
heat flux model should be modified. Cattaneo [4] and 
Vernotte [5] suggested independently a modified heat 
flux model in the form of 

r;+q= -kVT 

where 9 is the heat flux vector, k is the thermal con- 
ductivity and r is the relaxation time. Sieniutycz [6] 
quoted that the r values for homogeneous substance 
are of the order lo-* to lo-l2 s. However, for non- 
homogeneous materials, Luikov [7] found that the r 
values are of the order 10e3 to IO3 s. Recently, 
Kaminski [8] determined experimentally that the T 
values for nonhomogeneous inner structure materials, 
such as glass ballotini, sand, H acid, etc., ranges from 
10 s (for glass ballotini) to 50 s (for ion exchanger). 
The equation of energy conservation for such prob- 
lems is given as 

&,$ -v-q 

where p is the density and C,, is the specific heat. 

Elimination of q between equations (1) and (2) 
leads to the hyperbolic heat conduction equation. 

+pC,g= V*(kVT). (3) 

Various analytical and numerical methods [3,9-l 31 
have been proposed to solve hyperbolic heat con- 
duction problems. However, most methods are 
restricted to the analysis of one-dimensional 
problems. Due to the complicated reflection and inter- 
action of thermal waves, multi-dimensional hyper- 
bolic heat conduction problems are much more diffi- 
cult to solve than one-dimensional problems. To the 
best of the authors’ knowledge, only Yang [ 141 applied 
high-resolution numerical schemes to solve two- 
dimensional hy~rbolic heat conduction problems. 
Yang 1141 formulated the hyperbolic heat conduction 
(HHC) equations in an arbitrary body-fitted co- 
ordinate grid. The high-order non-oscillatory numeri- 
cal schemes applied to one-dimensional HHC equa- 
tion [13] was extended to two-dimensional problems 
by using the fractional step method. All calculations 
in the work of Yang 1141 were performed using Roe’s 
superbee limiter [l3]. At the same time, the finer grid 
size and v = 0.4 are also required, where v denotes the 
Courant-Friedrichs-Lewy (CFL) number. It can be 
seen that the work of Yang [14] did not show the 
actual numerical values of the investigated problems. 
Thus the comparative task between the present results 
and his results 1141 is not made. The purpose of the 
present study is to provide a simpler approach to 
solve two-dimensional HHC problems without severe 
numerical oscillations. 

The authors have developed an efficient numerical 
scheme involving the Laplace transform technique 
and the control volume method for one-dimensional 
HHC problems 1151, and excelient comparisons with 
analytical results were obtained for various cases. The 
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NOMENCLATURE 

specific heat Greek symbols 
propagation velocity of thermal wave 

unit vector in the .u-direction 
unit vector in the r-direction 
thermal cond~,cti~it~ 
shape function 
dimensionless heat flux 
Laplace transformed dinlensiot~icss heat 

flux 

heat flux 
kd&lCC tGUlSfOl-Ill ~NYdIllCtel 

lemperaturc 
ambient teln~e~~turc 
initial temperi\ture 
time 
space coordinate in .s-direction 
space coordinate in j,-direction. 

present study extends this numerical scheme to tth’o- 
dimensional problems, with Laplace transform 
method used to remove the time-derivative terms from 
the governing equation. and then, the discretized 
expression of the transforlned governing equation is 
derived by using the control volume method. The 
authors’ previous work [15] has proved that the 
selection of the shape function is an important task l’ot 
accurately predicting the propagation of the thermal 
wave. and the hyperbolic shape function for one- 
dimensional problems has been derived from the 
associated homogeneous differential equation in the 

transform domain to suppress successfully the 
numerical oscillations [I 51. Thus a bi-hyperbolic 
shape function for two-dimensional problems is 

obtained by using the similar technique. and the 
numerical inversion of the Laplace transform is used 
to invert the transformed temperature to the physical 
result. It is found that the numerical instability 
induced by the bad choice of I’ will not bc found in 

the present study. Hence, the present method can 
suppress the numerical oscillations. 

MATHEMATICAL FORMULATION 

IL is seen from equation (3) that a two”dimcnsiollal 

hyperbolic heat conduction equation with constant 
thermal properties in a rectangular coordinate system 
can be written as 

For convenience of numerical analysis. the 

foliowing dimellsio~~ess parameters are introduced as 

dimcnsionlcss tcmpcrdturc 

I .@rcc tl-ansformcd din~cllsionless 

tctll~~cr~~tllrc 
c&Gent in governing ditl~reilti~~l 

cc~uatlon 

(.‘ouranl i:ricdrichs Lcu? 

llumbcl 

dimensionless time 

density 
rclnxation time 
control \:nl~irw. 

thermal diffusivity, /<:/>C’,, 
dimensionless space coordinate in I.- 

direction 

M/here r,,, is the initial tempcr~ltlirc. 7‘,, is the an~hi~tl~ 
temperature and C’ is the propagation speed 01’ the 
thermal wave and is defined as C’ = (x/r)’ . . Thus 

the dimensionless form of equation (4) with these 
~l~inensionl~ss variables in equation (5) can hc 
written as 

It3 alI illustrative examples of this paper. the initial 

conditions arc given as 

Various types of’ the boundary conditions will bc 
discussed in the following indi~idLi~1~ cuamplcs. 

METHOD OF SOLUTION 

To remove the <-derivative terms. the Laplace 

transform technique is employed. Taking the Laplacc 
transform ofeqi~~tioi~ (6) with respect to i gives 

whcrc s is the Laplace transforln parameter anti (7 is 
the Laplace transform of the dimensionless tcm- 
peraturc 0 and is defined as 

Subsequently, the control volums formulation is u?;Ctl 
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Fro. 1. Domain of R and four rectangular elements sur- 
rounding a typical interior point P. 

to discretize equation (7). Integration of equation (7) 
within a control volume B gives 

Before proceeding to discretize equation (9), we 
must approximate &r/, 5,s) in terms of the nodal 
values and the shape functions within a typical 
element. For easy illustration, Fig. 1 shows the 
domain of interest Q and four rectangular elements 
surrounding a typical interior point P in the (s,i) 
coordinate system. The domain of a in the present 
study is subdi~ded into a number of four-noded rec- 
tangular elements. First, the element eNE with 
vertices P, E, NE and N is discussed, as shown in Fig. 
1. The unknot function within eNE &q, [, s) can be 
approximated by 

where these four nodal values are regarded as 
unknown at this stage, but are to be exactly specified 
later. NPI NE, N&$ and iv,, are shape functions in 
the Laplce transform domain and are functions 
of the space variables. For the other three elements, 
P-N-NW-W, P-S-SE-E and P-W- 

SW-S, &can also be approximated in a similar way. 
The shape functions can be chosen arbitra~ly. 

However, as in the one-dimensional work considered 
earlier 1151, the selection of the shape function in the 
transform domain is an important task for accurately 
predicting the propagation of the thermal wave. A 
poor selection of the shape functions will affect the 
stability of the numerical results. Tamma and Railkar 
[ 127 ever used the general solution of the transformed 
equation as the shape functions in their specially 

tailored transfinite-element formulations for one- 
dimensional hy~rbolic heat conduction problems. 
However, it is sometimes difficult to find the general 
solution of a differential equation. Thus the technique 
in the authors’ previous work [ 151 is extended to deter- 
mine NP, NE, NN and NNE. The shape function 
Nk(~, [, s) is constructed such that it is unity at 9 = qk 
and [ = & and vanishes at the other three vertices 
of the same rectangular element. These four shape 
functions can be derived by using the following pro- 
cedures. 

The shape functions within the element eaVE are 
assumed to satisfy the homogeneous second-order 
partial differential equation 

PN, a2Nk 
“-7 -k 
dPf ar2 -A2N, = 0, 

By the separation of variables’ technique. t? can be 
expressed by 

N,(rl,Ls) = JW,s)+ Y(it$. (12) 

Substituting equation (12) into equation (11) can yield 

d2X 
-7-n2X==0, forq,<n<q,+Ar] (13a) 
drl 

and 

d2Y 
-d7 -ki’Y = 0, for cP < [ G iP+A[ (13b) 

where p2 = La/Z. 
The approximation function of IV~(~, c, s) within 

the element eNE can be written as 

Nk = A*sinh [rl(l -q*)Atlf*sinh [,u(l --[*)A[] 

+B*sinh[,uq*An]*sinh[,~(l-<*)A[] 

+C.sinh[~~l-~*)A~]*sinh(~~*A~~ 

-tD*sinh (~~~A~).sinh~~~*A~~ (14) 

where ye* = (q-r~~)F)/Aq and <* = (5-[P)/A[. A, B, C 

and Dare determined from the constructed conditions 
of N,. So, it is not difficult to derive these four shape 
functions N,, NE, NdV and N>,, as 

1 

Np = sinh (!tAq) * sinh (PA<) 
sinh [~(l -?*)A?] 

x sinh [p(l-<*)A(] (15a) 

NE = 7 
1 ___““__ 

smh (ftA~) * sinh (,uA[) 
sinh (p(pl*Aq) 

x sinh [~(l -i*)A<] (15b) 

N* = ~___’ 
s~nh~~A~~!sin~sinh ]~(l--~l*)Aq] 

x sinh (~~*A~) (1%) 
and 



I 
y,, _ ., .-- 

smh ( ,uA~) * sinh (/LAO 
sinh (hc~/*Aq) 

x sinh (,ig*A,‘). ( 1 Sd) 

Similarly, the approximate function of 1\:, within tho 

other three elements can be determined in the same 
way. It can be found that the bi-linear shape functions 
arc the special case of the by-hyp~rboli~ shape 
functions. The hyperb~~ii~ function, sinh (:j, can be 
expressed in a series form as 

sinh (I) = :+0(~‘j. (16) 

With the error O(r’j for sinh (z). equations (I 5) arc 
reduced to the following bi-linear shape function as 

IV,, = (1 --tr*)‘(l --;a) (l7aj 

Y -,I*(l-;*) .i ( I7b) 

iv, = (1 -n*)i* f 17cj 

and 

,v,,,,: = Jl*;* i 17dj 

where the bi-linear shape functions can be derived by 
taking the product oftwo one-dimensional linear shape 
functions. In other words, the shape functions for the 

two-dimensional element can be derived by procesrcs 
identical to those described for one dimension. 

It can be observed that node P is only associated 

with elements e,,,+, eNM;. esw and egE. The discretized 
equation corresponding to node P will not be affcctcd 
by the assembly of the contributions from the other 
elements. Thus the complete discretized equation for 
node P can be given by the assembly of the con- 
tributions from elements c,.,.. t’,Vl, . qsM. and (T~, as 

u,>-ij;,io,*Ij;;+~1, .o,, +n,V-fJ,+a,~*$;i-I ,,,. ad,,: 

-+cl,,V*o”,, +n,~,~~~s,,+u,s,‘~~U~ = 0 (18) 

where 

(1 P = 4 

-cash (~Av) cash (pA;j 
I 

(l%i) 

ofi: = u,+ = 2 cash ({lb;)-cash 

(1%) 

The rearrangement ofequations (IO) with appropriate 
boundary conditions can yield the following \;ector- 
matrix equations as 

[/I] iii; = ; ! / (20) 

7‘11~ double-direct Guassian elimination algorithm 
and the numerical inversion of the Laplace transform 
proposed hy Honig and Hirdes j16j is employed to 
invert the dimensionless temperature in the trans- 
form domain to the physical quantity. .4 two- 
dimcnsi(~nal computer code is written based on the 

above mathematical formulation. It is evident that 
two-dimensional WHC problems arc much more diffi- 
cult to solve than one-dimensional problems. The ao- 
curacy of this code will be evidenced against a two- 
dimensional HHC problem with analytical results. 

ILLUSTRATIVE EXAMPLES 

To demonstrate the successful application of the 
present numerical method to m~~liidimensional HHC 
problems involving a case with the irregular geometry. 
three examples are illustrated below. The hi-linear 
shape functions can produce severe numerical oscil- 

lations in the vicinity of the thermal wave so that 
they will not be applied in the present study. All the 
computations are performed on a PC with an 80486 
microprocessor and on the uniform space sizes 
A~I = A; = 0.05. It is obvious that the number of 
nodes required for the high-resolution numerical 
methods [I41 is much larger than those required to 
model the present problem. Thus the cost and effort 
needed for Yang’s solutions will be greater than those 
needed for the present solutions. 

To validate the accuracy of the present method. the 
first example concerned is a two-dimensional HHC 
in a semi-infinite strip, as shown in Fig. 2. with a 
constant thermal properties and with a uniform initial 
tcmpcrature (I = 0. Suddenly, the wail at u = 0 is 
impulsively stepped to a temperature of the sine vari- 
ation. i.e. O(0, <, < ) = sin (ni). The boundary surfaces 

at < = 0 and < = 1 are kept at a constant temperature, 
(1 = 0. These boundary conditions are also shown in 
Fig. 2. The analytical solution of this problem ~a11 

be easily obtained by using the Laplacc t~dnsfoi-111 
method as 
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e=o 

LL_-9 
e=o 

FIG. 2. Schematic diagram of Example 1. 

Table 1 shows a comparison between the present 
results and the analytical solutions. It is seen that 
the present numerical solutions agree well with the 
analytical solution and do not exhibit severe numeri- 
cal oscillations in the vicinity of the jump disconti- 
nuity. It is worth mentioning that the dimensionless 
temperature distribution at 5 = q = 1 has the jump 
discontinuity. This phenomenon is known as the 
Gibbs phenomenon, which is of practical importance 
since it is difficult to obtain a convergent solution in 
the neighbourhood of the jump discontinuity. The 
actual calculated values at points (1,0.25, 1) and 
(1,0.5,1) are ‘0.1141’ and ‘0.1614’, respectively. 
In accordance with the Fourier convergence the- 
orem [17], if the dimensionless temperature distri- 
bution at 5 = q = 1 and any [ values has the jump 
discontinuity, the dimensionless temperature con- 
verges to the average value at the jump, namely, 
&(l,c, 1) = [O(l-,i, 1)+&l+,<, 1)]/2.0. Note that 
0( I+, [, 1) = 0 satisfies the problem boundary 
condition. Thus Q(l -, [, 1) = 2.0 x B,(l, [, 1) is given 
in Table 1. This comparison implies that the present 

Table 1. Comparison of the dimensionless temperature at 
(=I 

i = 0.25 [ = 0.5 

7 Present Exact Present Exact 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 

0.7071 
0.5141 
0.3748 
0.2756 
0.2053 
0.1602 
0.1358 
0.1312 
0.1471 
0.1882 
0.2282 
0.0 

0.7071 1.0 1.0 
0.5157 0.7271 0.7293 
0.3764 0.5301 0.5323 
0.2764 0.3897 0.3909 
0.2066 0.2903 0.2921 
0.1611 0.2265 0.2278 
0.1365 0.1920 0.1931 
0.1319 0.1855 0.1865 
0.1482 0.2081 0.2096 
0.1889 0.2661 0.2672 
0.2294 0.3228 0.3224 
0.0 0.0 0.0 
0.0 0.0 0.0 

FIG. 3. Schematic diagram of Example 2. 

-7j 

method has good accuracy for such problems. To 
further show the efficiency of the present method, the 
following examples will be illustrated. 

Example 2 
The second illustrative problem concerns the 

propagation of the thermal wave in a rectangular 
cavity. The physical geometry of this problem is 
shown in Fig. 3. The cavity has a dimensionless length 
1.0 and height 0.9. Initially, the slab is kept at a con- 
stant dimensionless temperature 0 = 0. For time 
5 > 0, the heated region is centrally located at the 
left boundary surface and is one-third the size of the 
height. The temperature there is kept at a constant 
dimensionless temperature 0 = 1. The right boundary 
surface is kept at a constant dimensionless tem- 
perature 0 = 0. The rest of the boundary surfaces 
are insulated. Accordingly, the thermal waves will 
propagate towards the right and will expand into the 
top and bottom surfaces. Figures 4 and 5 show the 
propagations of the thermal wave in the cavity at 
various dimensionless times. Figure 4 shows the three- 
dimensional sketch of the dimensionless temperature 
at various dimensionless times. The phenomenon of 
the jump discontinuities, reflections and interactions 
can be obviously observed in Fig. 4. The isothermal 
distributions with a contour level of 0.05 at various 
dimensionless times are shown in Fig. 5. It is found 
from Fig. 5(b) that the thermal wave front reaches the 
top and bottom surfaces and is reflected at 5 = 0.3. 
Figure 5(c) shows that the thermal waves reflected 
from the top and bottom surfaces interact with the 
original thermal wave propagations at 5 = 0.5. At the 
dimensionless time < = 1.0, the thermal wave front 
reaches the right wall and is reflected. It can be noted 
from Figs. 4(e), 4(f), 5(e) and 5(f) that the strength 
of the original thermal discontinuity reduces with time 
due to heat diffusion. The temperature contours at 
r = 5.0 are essentially the same as those obtained from 
parabolic heat conduction. The multiple reflection 
feature of this problem shows a substantial difference 
between hyperbolic and parabolic heat conduction. 
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FIG. 4. Three dimensional sketch of the dimensionless temperature for Example 2 at varmu dimensionless 
times. (a) [ = 0.15 : (b) ,F -= 0.3: (c) t = 0.5 : (d) ( = I .O; (e) 5 = 1.5 : (f) < = 5.0. 

These phenomena agree well with those discussed in do not reveal severe nume~cal oscillations in the vicin- 

the work of Yang f14]. Moreover, the present results ity of the jump discontinuity. These results show that 
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FIG. 5. Isothermal distributions with the contour level of 0.05 at various dimensionless times. (a) 5 = 0.15 ; 
(b) 5 = 0.3 ; (c) 5 = 0.5 ; (d) 5 = 1.0; (e) 5 = 1.5 ; (f) t: = 5.0. 

the present method can be successfully applied to thermal wave in an irregular geometry with a square 
analyze such problems. attached to a semi-infinite strip, as shown in Fig. 6. 

The dimensionless length of the top and bottom walls 
E.xumple 3 

To show further the efficiency of the present 
in the left square is chosen as 0.3 and the height as 

method, this example studies the propagation of the 
0.3. The dimensionless height of the right semi-infinite 
strip is chosen as 0.9. The boundary conditions are 
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FKi. 5-Continued. 

The Laplace transform of equation (22) is dimensionless heat flux vector in the q- and i-direc- 
* _ 

(5+2)*(&i+&j) = - i:i- gj 
tions, and i and j denote the unit vectors in the q- and 

(23) c-directions. The discretized equation for the left wall 

where 0, and 0, are the components of the 
of the square subjected to the constant heat flux is 
given as 



(a) 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

1.14 .952 0 0 0 0 0 0 0 O 0 0 0 0 

1.14 .952 0 0 0 0 0 0 0 0 0 0 0 0 

1.14 .952 0 0 0 0 0 0 0 0 0 0 0 0 

1.14 .952 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

1.26 1.09 .907 .366 0 0 0 0 0 0 0 0 0 0 

1.28 1.09 .907 .368 o 0 0 0 0 0 0 0 0 0 

1.28 1.09 .907 .368 o 0 0 0 0 0 0 0 0 0 

1.28 1.09 .907 .368 o 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

(b) 0 0 0 0 0 0 0 0 0 0 0 

FIG. 7. Nodal temperature distributions of Example 3 at various dimcnsionlcss t~mcs (ai c ~ 0.1 i 
(b) c’ = 0 3 : (c) g = 0.6 : (d) < = I.?. 
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533 0 0 0 0 0 0 0 0 0 

.719 519 0 0 0 0 0 0 0 0 

,861 673 .4§3 0 0 0 0 0 0 0 

1.53 1.33 1.15 .963 .789 .6t§ .451 0 0 0 0 0 0 

1.53 1.33 1.15 .§76 .613 .654 .499 0 0 0 0 0 0 

1.53 1.33 1.15 .976 .613 .654 .499 0 0 0 0 0 0 

1.53 1.33 1.15 .963 .769 AX9 .451 0 0 0 0 0 0 

.861 .673 .4§3 0 0 0 0 0 0 0 

.719 .519 0 0 0 0 0 0 0 0 

533 0 0 0 0 0 0 0 0 0 

1.06 .934 .8t3 ,709 .626 .559 .498 .453 0 0 

1.19 1.05 .§t2 607 .723 .655 ,587 St9 .275 0 

1.31 1.16 1.01 .904 .019 .734 .653 .472 .320 0 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.96 1.78 1.59 1.42 1.24 1.09 

1.99 1.76 1.58 I.44 I.31 1.19 

1.99 2.76 1.58 1.44 1.31 1.19 

1.96 1.78 1.59 1.42 1.24 1.09 

1.31 1.16 1.01 

1.19 1.05 .912 

t.06 ,934 .813 

FIG. 

.984 .689 .801 .634 .491 .369 .288 0 

1.05 .925 .774 .641 ST9 A08 .309 0 

1.05 -925 .774 .64l .5fQ A08 .309 0 

.984 .669 .801 .634 .491 .369 .268 0 

.904 .819 .734 .653 .472 .328 0 0 

.807 .723 .655 .587 ,519 .275 0 0 

.709 ,828 .55§ .4§8 .453 0 0 0 

7-Contimd 

the thermal wave at l = 0.15 and r = 0.3 look like 
those of one-dimensional thermal waves. It can be 
observed from Fig. 7(b) that the incident thermal 
shock has reached the right semi-infinite strip at 
5 = 0.3. At 5 = 0.6, the thermal wave front reaches 
the top and bottom surfaces of the right semi-infinite 
strip, as shown in Fig. 7(c). However, in accordance 
with the variation of temperature shown in Fig. 7(d), 
the thermal waves have reflected from the top and 
bottom surfaces of the right semi-infinite strip interact 
with the propagation of the original thermal wave at 
ir = 1.2. 

CONCLUSiONS 

The present study introduces an efficient numerical 
method to analyze two-dimensional HHC problems 
with irregular geometries. The major difficulty in the 
numerical analysis of HHC problems is the sup- 
pression of the numerical oscillations. As the thermal 

waves propagate with a finite speed, jump discon- 
tinuities will take place at the fronts of thermal wave 
propagations or interactions. As shown in the present 
results, the propagations, reflections and interac- 
tions of two-dimensional thermal waves are much 
more complicated than those of one-dimensional 
thermal waves. Thus nlulti-dimensional HHC prob- 
lems are much more difficult to solve than one- 
dimensional problems. The present numerical scheme 
involving the hybrid applications of the Laplace trans- 
form technique and the control volume formulation 
is employed. The application of the Laplace transform 
technique can quickly give an accurate solution at a 
specific time without step-by-step computations in the 
time domain. This advantage can save the computing 
time and can avoid undesirable numerical oscillations 
due to a bad choice of time-step and space-step sizes. 
The key of the present numerical scheme is the selec- 
tion of the shape functions used in the control volume 
formulation. Since the conventional bi-linear shape 



functions will produce scverc numerical oscillations 

in the numerical results. the &hyperbolic shape CLIIIC- 

lions extended from the one-dimensional hyperbolic 7 

shape functions are used in the prcscnt study. II GIII bc 

found from various illustrated results that the pi-cscnt 8. 
numerical solutions do not revcal scvcrc numerical 

oscillations in the vicini(y of .junip disconrinuitk. 

This conclusion implies that the k&hyperbolic shape 
‘1. 

function shown in the present study can bc :I bettel 

choice for the present mathematical formulation. IO 
Moreover. the prcsenf method does not need to map 

the (.u. j‘) coordinate system into the body-tilt4 co- Ii 

ordinate system and to consider the cReect of the (-FL_ 

nutnber on the numerical results. il 
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