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Abstract—Two-dimensional hyperbolic heat conduction problems are investigated by using the hybrid
numerical scheme. The thermal wave of such problems propagates with a finite velocity. Thus numerical
oscillations in the vicinity of the thermal wave front can be observed, and a hybrid numerical method is
presented, to reduce these oscillatory magnitudes. This method is that the time-dependent terms in the
governing differential equations are removed by using the Laplace transform technique, and then the
control volume method is used to discretize the space domain in the transform domain. The key of the
present method is the selection of the shape functions. Various examples with the irregular geometry are
illustrated.

INTRODUCTION

WitH THE advent of science and technology involving
very low temperatures near absolute zero, extremely
short transient duration and very high heat fluxes,
some investigators found that the heat propagation
velocity of such problems becomes finite. Peshkov
[1] experimentally determined the velocity of thermal
wave in helium I to be 19 m s~ at a temperature of
1.4 K. Human {2] found that the thermal propagation
becomes dominant for short-pulse laser heating.
Maurer and Thompson [3) also found that if the sur-
face heat fluxes are greater than the order 10’ Wem 2,
the Fourier heat flux model will fail. To account for
the phenomena involving the finite propagation
velocity of the thermal wave, the classical Fourier
heat flux model should be modified. Cattaneo [4] and
Vernotte [5] suggested independently a modified heat
flux model in the form of
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where ¢ is the heat flux vector, k is the thermal con-
ductivity and t is the relaxation time. Sieniutycz [6]
quoted that the 7 values for homogeneous substance
are of the order 10~ % to 10~ '2 s. However, for non-
homogeneous materials, Luikov [7] found that the 1
values are of the order 107° to 10° s. Recently,
Kaminski (8] determined experimentally that the 1
values for nonhomogeneous inner structure materials,
such as glass ballotini, sand, H acid, etc., ranges from
10 s (for glass ballotini) to 50 s (for ion exchanger).
The equation of energy conservation for such prob-
lems is given as
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where p is the density and C, is the specific heat.

Elimination of ¢ between equations (1) and (2)
leads to the hyperbolic heat conduction equation.
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Various analytical and numerical methods [3, 9-13]
have been proposed to solve hyperbolic heat con-
duction problems. However, most methods are
restricted to the analysis of one-dimensional
problems. Due to the complicated refiection and inter-
action of thermal waves, multi-dimensional hyper-
bolic heat conduction problems are much more diffi-
cult to solve than one-dimensional problems. To the
best of the authors’ knowledge, only Yang [14] applied
high-resolution numerical schemes to solve two-
dimensional hyperbolic heat conduction problems.
Yang [14] formulated the hyperbolic heat conduction
(HHC) equations in an arbitrary body-fitted co-
ordinate grid. The high-order non-oscillatory numeri-
cal schemes applied to one-dimensional HHC equa-
tion [13] was extended to two-dimensional problems
by using the fractional step method. All calculations
in the work of Yang [14] were performed using Roe’s
superbee limiter [13]. At the same time, the finer grid
size and v = 0.4 are also required, where v denotes the
Courant-Friedrichs-Lewy (CFL) number. It can be
seen that the work of Yang [14] did not show the
actual numerical values of the investigated problems.
Thus the comparative task between the present results
and his results [14] is not made. The purpose of the
present study is fo provide a simpler approach to
solve two-dimensional HHC problems without severe
numerical oscillations.

The authors have developed an efficient numerical
scheme involving the Laplace transform technique
and the control volume method for one-dimensional
HHC problems [15], and excellent comparisons with
analytical results were obtained for various cases. The
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NOMENCLATURE

specific heat

¢ propagation velocity of thermal wave

i unit vector in the x-direction

j unit vector in the p-direction

k thermal conductivity

NV shape function

¢ dimensionless heat flux

0  Laplace transformed dimensionless heat
flux

gy heat flux

§ Laplace transform parameter

T lemperature

T, ambient temperature

T,, initial temperature

! time
X  space coordinate in x-direction
¥ space coordinate in p-direction.

Greek symbols ]
% thermal diffusivity, k/pC,
< dimensionless space coordinate in - |

direction
3 dimensionless space coordinate in a-
direction
{1 dimenstonless temperature ;
#  bLaplace transformed dimensionless ‘

iemperaturce i
. coefficient in governing differential

cquation |
¥ Courant-Friedrichs-Lewy

number

¢ dimensionless time !
p densily !
T relaxation ume
Q  control volume.

present study extends this numerical scheme to two-
dimensional problems, with Laplace transform
method used to remove the time-derivative terms {rom
the governing equation, and then, the discretized
expression of the transformed governing equation is
derived by using the control volume method. The
authors’ previous work [15] has proved that the
selection of the shape function is an important task for
accurately predicting the propagation of the thermal
wave, and the hyperbolic shape function for one-
dimensional problems has been derived from the
associated homogeneous differential cquation in the
transform domain to suppress successfully the
numerical oscillations [15]. Thus a bi-hyperbolic
shape function for two-dimensional problems is
obtained by using the similar technique, and the
numerical inversion of the Laplace transform is used
to invert the transformed temperature to the physical
result. It is found that the numerical instability
induced by the bad choice of v will not be found in
the present study. Hence, the present method can
suppress the numerical oscillations.

MATHEMATICAL FORMULATION

It is seen from equation (3) that a two-dimensional
hyperbolic heat conduction equation with constant
thermal properties in a rectangular coordinate system
can be written as
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For convenience of numerical analysis. the

following dimensionless parameters are introduced as
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where T, is the initial temperature. Ty is the ambient
temperature and ¢ is the propagation speed of the
thermal wave and is defined as ¢ = (1), Thuy
the dimensionless form of equation (4) with these
dimensionless variables in equation (5) can be
wrilien as
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In all illustrative examples of this paper, the iniual
conditions arc given as

007.5.0) =0
it
o L0 =0
¢

Various types of the boundary conditions will be
discussed in the following individual cxamples.

METHOD OF SOLUTION
To remove the ¢-derivative terms, the Laplace
transform technique is employed. Taking the Laplace
transform of equation (6) with respect to £ gives

2000, L
L — =0 (7
ans o &

where s is the Laplace transform parameter and fis
the Laplace transform of the dimensionless tem-
perature 0 and is defined as

(e
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Subsequently, the control volume formulation is used
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FiG. 1. Domain of Q and four rectangular elements sut-
rounding a typical interior point P.

to discretize equation (7). Integration of equation (7)
within a control volume Q gives

L [ig + %- —(sz+2s)§] dndl =0, n,{eQ.
&)
Before proceeding to discretize equation (9), we
must approximate 8(,{,s) in terms of the nodal
values and the shape functions within a typical
element. For easy illustration, Fig. 1 shows the
domain of interest Q and four rectangular elements
surrounding a typical interior point P in the (y,{)
coordinate system. The domain of £ in the present
study is subdivided into a number of four-noded rec-
tangular elements. First, the element e,y with
vertices P, E, NE and N is discussed, as shown in Fig.
1. The unknown function within ey (5, {, s) can be
approximated by

5(’?: Cv S) = NP(”‘» (:v S)§P+ N{;(nw ga S)(’;ﬁ
+NN(n’ §3S)§N+NNE(W’C55)5NE (IO)

where these four nodal values are regarded as
unknown at this stage, but are to be exactly specified
later. Np, Ny, N, and Ny are shape functions in
the Laplce transform domain and are functions
of the space variables. For the other three elements,
P-N—-NW—-W, P~S—SE-E and P-—W-—
SW—S§, 0 can also be approximated in a similar way.

The shape functions can be chosen arbitrarily.
However, as in the one-dimensional work considered
earlier [15], the selection of the shape function in the
transform domain is an important task for accurately
predicting the propagation of the thermal wave. A
poor selection of the shape functions will affect the
stability of the numerical results. Tamma and Railkar
[12] ever used the general solution of the transformed
equation as the shape functions in their specially
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tailored transfinite-element formulations for one-
dimensional hyperbolic heat conduction problems.
However, it is sometimes difficult to find the general
solution of a differential equation. Thus the technique
in the authors’ previous work [15] is extended to deter-
mine Np, Ny, Ny and N, The shape function
N(n,{,5) is constructed such that it is unity at 5 = #,
and { = {, and vanishes at the other three vertices
of the same rectangular element. These four shape
functions can be derived by using the following pro-
cedures.

The shape functions within the element ey, are
assumed to satisfy the homogeneous second-order
partial differential equation

>N,

O*N,
;3? +

*éz‘f-;{sz?—‘O,
forn, <n<np+An, p<{LH+AL (11)

where A2 = s%42s. )
By the separation of variables technique, ¢ can be
expressed by

Ni(n,{,5) = X(n,5) - Y((,9). (12)
Substituting equation (12) into equation (11) can yield

exo

.-dmﬂz —pX =0, fory,<n<np+4n (13a)
and

ey

= H Y=0, for{, <{<{p+Al (13b)

where u? = A%/2.
The approximation function of N {(y,{,s) within
the element ey can be written as

Ny = A-sinh [p(1 —#*)An}-sinh [p(1 - )AL
-+ B+ sinh [pun*Ay} - sinh [u(1 — {*)AL]
+ Csinh [p(1 —7*)Ax] - sinh (u{ *AL)
+ D+ sinh (un*Ay) - sinh (p{ *AL) (14)

where n* = (n—np)/An and {* = ((~{p)/AL. 4, B, C
and D are determined from the constructed conditions
of N.. So, it is not difficult to derive these four shape
functions Np, Ny, Ny and Ny, as

1
Nr = Ginh () - sinh (4AD)

x sinh {p(1—{*AL] (15a)

sinh [u(1—4*)An]

N = 1
£ sinh (uAn) - sinh (#A0)

x sinh [pu(1—-CMALT  (15b)

sinh (un*An)

N = 1
N sinh (uAy) - sinh (AL}

sinh [p(1—n*)An]

x sinh (u{*A0) (15¢)
and
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, 1
Ny,

© sinh (pAn) - sinh (uAQ) sinh (un*An)

x sinh (ul*AL).  (15d)

Similarly, the approximate function of N, within the
other three elements can be determined in the same
way. It can be found that the bi-linear shape functions
are the special case of the bi-hyperbolic shape
functions. The hyperbolic function, sinh(z), can be
expressed in a series form as

sinh(z) = z4+O0(z%). (16)

With the error O(z") for sinh (z), equations (15) are
reduced to the following bi-linear shape function as

Np= (1 =% (1 =% (17a)
Np=n*r(1-{%) {17
Ny ={1—y*){* {17¢)

and
Ny =n*(* {17d)

where the bi-linear shape functions can be derived by
taking the product of two one-dimensional lincar shape
functions. In other words, the shape functions for the
two-dimensional element can be derived by processes
identical to those described for one dimension.

It can be observed that node P is only associated
with elements ey, ey, sy and ey, The discretized
equation corresponding to node P will not be affected
by the assembly of the contributions from the other
elements. Thus the complete discretized equation for
node P can be given by the assembly of the con-
tributions from elements ¢y,.. €. €5y and e as

dpOntap 0ptan - Optan Tv+ag Tty Top

gy (T.rvw+a.v5 . {)is‘r:‘*‘asw * J‘»‘W =0 (I8)

where

AL
ap =4 [cosh {1tAn) cosh (,u 5:)

7

+cosh {gA{) cosh (j,u Aj)
—cosh (pAn) cosh (HA;):} (19a)

ap = Qy = 2 [cosh (#Al) —cosh (M A;)
~cosh (11 %”) cosh umﬁ (19b)

An
dy = dg = 2] cosh (pAn)—cosh | u 5

B

; AL .
—cosh (pAn) cosh (/1 5 ) (19¢)

=

and

Ay
Uyp = yw = gy = dgy = COSA L

4-cosh (;z - ) -2 {18d)

The rearrangement of equations (19) with appropriate
boundary conditions can yield the following vector-
matrix equations as

[A) (0} =171 (20)
The double-direct Guassian climination algorithm
and the numerical inversion of the Laplace transform
proposed by Honig and Hirdes {16} is cmployed to
invert the dimensionless temperature in the trans-
form domain to the physical guantity. A two-
dimensional computer code is written based on the
above mathematical formulation. It is evident that
two-dimensional HHC problems are much more diffi-
cult to solve than one-dimensional problems. The ac-
curacy of this code will be evidenced against a two-
dimensional HHC problem with analytical results.

ILLUSTRATIVE EXAMPLES

To demonstrate the successful application of the
present numerical method to multidimensional HHC
problems involving a case with the irregular geometry.
three examples are illustrated below. The bi-linear
shape functions can produce severe numerical oscil-
lations in the vicinity of the thermal wave so that
they will not be applied in the present study. All the
computations are performed on a PC with an 80486
microprocessor and on the uniform space sizes
An = AL = 0.05. Tt is obvious that the number of
nodes required for the high-resolution numerical
methods [14] is much larger than those required (o
model the present problem. Thus the cost and effort
nceded for Yang's solutions will be greater than those
needed for the present solutions.

Example 1

To validate the accuracy of the present method, the
first example concerned is a two-dimensional HHC
in a semi-infinite strip, as shown in Fig. 2, with a
constant thermal properties and with a uniform initial
temperature = 0. Suddenly, the wall at n =0 is
impulsively stepped to a temperature of the sine vari-
ation. .e. 0(0,{, &) = sin (n{). The boundary surfaces
at { = 0and { = 1 arc kept at a constant temperature,
# = 0. These boundary conditions are also shown in
Fig. 2. The analytical solution of this problem can
be easily obtained by using the Laplace transform
method as
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FI1G. 2. Schematic diagram of Example 1.
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Table 1 shows a comparison between the present
results and the analytical solutions. It is seen that
the present numerical solutions agree well with the
analytical solution and do not exhibit severe numeri-
cal oscillations in the vicinity of the jump disconti-
nuity. It is worth mentioning that the dimensionless
temperature distribution at £ =7 = 1 has the jump
discontinuity. This phenomenon is known as the
Gibbs phenomenon, which is of practical importance
since it is difficult to obtain a convergent solution in
the neighbourhood of the jump discontinuity. The
actual calculated values at points (1,0.25,1) and
(1,0.5,1) are ‘0.1141’ and ‘0.1614’, respectively.
In accordance with the Fourier convergence the-
orem [17], if the dimensionless temperature distri-
bution at ¢ =# =1 and any { values has the jump
discontinuity, the dimensionless temperature con-
verges to the average value at the jump, namely,
0.(1,L, =007, 1)+6(1",{,1}/2.0. Note that
0(17,{,1) =0 satisfies the problem boundary
condition. Thus 0(17,{,1) =2.0x6.(1,{,1) is given
in Table 1. This comparison implies that the present

Table 1. Comparison of the dimensionless temperature at

E=1
(=025 (=05
n Present Exact Present Exact
0 0.7071 0.7071 1.0 1.0
0.1 0.5141 0.5157 0.7271 0.7293
0.2 0.3748 0.3764 0.5301 0.5323
0.3 0.2756 0.2764 0.3897 0.3909
0.4 0.2053 0.2066 0.2903 0.2921
0.5 0.1602 0.1611 0.2265 0.2278
0.6 0.1358 0.1365 0.1920 0.1931
0.7 0.1312 0.1319 0.1855 0.1865
0.8 0.1471 0.1482 0.2081 0.2096
0.9 0.1882 0.1889 0.2661 0.2672
1.0 0.2282 0.2294 0.3228 0.3224
1.1 0.0 0.0 0.0 0.0
1.2 0.0 0.0 0.0

1.0

— ¥
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F1G. 3. Schematic diagram of Example 2.

method has good accuracy for such problems. To
further show the efficiency of the present method, the
following examples will be illustrated.

Example 2

The second illustrative problem concerns the
propagation of the thermal wave in a rectangular
cavity. The physical geometry of this problem is
shown in Fig. 3. The cavity has a dimensionless length
1.0 and height 0.9. Initially, the slab is kept at a con-
stant dimensionless temperature 6 = 0. For time
¢ > 0, the heated region is centrally located at the
left boundary surface and is one-third the size of the
height. The temperature there is kept at a constant
dimensionless temperature 6 = 1. The right boundary
surface is kept at a constant dimensionless tem-
perature 0 = 0. The rest of the boundary surfaces
are insulated. Accordingly, the thermal waves will
propagate towards the right and will expand into the
top and bottom surfaces. Figures 4 and 5 show the
propagations of the thermal wave in the cavity at
various dimensionless times. Figure 4 shows the three-
dimensional sketch of the dimensionless temperature
at various dimensionless times. The phenomenon of
the jump discontinuities, reflections and interactions
can be obviously observed in Fig. 4. The isothermal
distributions with a contour level of 0.05 at various
dimensionless times are shown in Fig. 5. It is found
from Fig. 5(b) that the thermal wave front reaches the
top and bottom surfaces and is reflected at ¢ = 0.3.
Figure 5(c) shows that the thermal waves reflected
from the top and bottom surfaces interact with the
original thermal wave propagations at & = 0.5. At the
dimensionless time ¢ = 1.0, the thermal wave front
reaches the right wall and is reflected. It can be noted
from Figs. 4(e), 4(f), 5(¢) and 5(f) that the strength
of the original thermal discontinuity reduces with time
due to heat diffusion. The temperature contours at
¢ = 5.0 areessentially the same as those obtained from
parabolic heat conduction. The multiple reflection
feature of this problem shows a substantial difference
between hyperbolic and parabolic heat conduction.
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FiG. 4. Three dimensional sketch of the dimensionless temperature for Example 2 at various dimensionless
times. () & =015 (M =03 () E=05 () =10:() &= 1.5;(() =50,

These phenomena agree well with those discussed in  do not reveal severe numerical oscillations in the vicin-
the work of Yang [14]. Moreover, the present results ity of the jump discontinuity. These results show that
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FiG. 5. Isothermal distributions with the contour level of 0.05 at various dimensionless times. (a) £ = 0.15;
(b)) E=03;()£=0.5;(d)E=1.0;() = 1.5;() &= 35.0.

the present method can be successfully applied to thermal wave in an irregular geometry with a square

analyze such problems. attached to a semi-infinite strip, as shown in Fig. 6.
The dimensionless length of the top and bottom walls
Example 3 in the left square is chosen as 0.3 and the height as

To show further the efficiency of the present 0.3. The dimensionless height of the right semi-infinite
method, this example studies the propagation of the  strip is chosen as 0.9, The boundary conditions are



6l H-T Caenoand 1-Y.0 Ly

{d)

Ve, Sew Continued.

aiso shown in Fig. 6. Initially, this material is kept at
a constant dimensionless temperature ) = 0. For the
dimensionless time & > (. a constant heat flux is sup-
plied on the left wall of the square. The heated region
is centrally located at the left wall of the square. The
dimensionless heat flux vector @ defined as
Q = (qipCoet Ty— T}y is introduced in the present

problem. For convenicnce, @ 15 ussumed 10 be unity
in the present numerical computations.

The dimensionless form of equation (1) can be
writien as
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FiG. 5—Continued.
The Laplace transform of equation (22) is dimensionless heat flux vector in the #- and {-direc-
of  ob tions, and i and j denote the unit vectors in the #- and
(5+2)-(0.i+3,j) = — -67,i— TCj (23)  {-directions. The discretized equation for the left wall
) C

of the square subjected to the constant heat flux is

where Q. and @, are the components of the given as
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where dp. dp. dy. ag. ay and ay, have been given in
cquations (19). /1

fro-= —sih (pAn) sinh (Al (s + 2y -

V.

(23

Duc to the action of the dimenstonless surlace heat

flux on the left wall of the square, the thermal wases
will propagate towards the right and will expand into
the top and bottom walls of the semi-infinite stnp.
The propagations of the thermal wave in the materiul
at various dimensionless times are shown in Fig. 7
Figures 7(a) and (b) show that the propagations of

0
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0

0

[¢]

0

0

0

0

o]

FiG. 7. Nodal temperature distributions of Example 3 at various dimensionless times. (a) S =045

() E=03:(c)E=06:(d)&=12
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(c) 533 0 0 0 0

719 519 0 0 O
861 673 493 0 O

153 1.33 1.5 .963 .789 .61 .451 O

1.53 1.33 145 .978 .B13 .654 .499 O

1.53 1.33 1.15 .978 .B13 654 .499 0O

1.53 1.33 1.15 .963 .789 .619 451 O

861 673 493 0 O

719 519 0 0 0

53 0 0 o O

(d) 1.06 .934 .813 .709
118 105 912 .807

131 116 1.01 .904

1,96 1.78 159 1.42 124 1.09 .984

1,98 1.76 1.58 144 131 119 105

1,99 1.76 1.58 1.44 131 118 105

196 1.78 1.59 1.42 1.24 1.08 984

131 1.16 1.01 .904

119 1.05 .912 .807

106 .934 .813 .709

63
0 0 0 0 0 Q
0 o] o] [} 0 Q
0 o 0 0 0 0
0 o 0 0 0 o
0 0 0 0 (¢] 0

(4] Q 0 0 0 0
6528 .559 .498 453 O o] )
723 855 .587 518 275 ¢ 0
819 734 .653 472 .328 0O 0
.B89 801 .634 .491 369 .268 O
825 774 641 519 408 309 O
925 774 641 519 408 308 0O
B89 .B01 .634 491 3689 .268 O
.B19 734 653 472 .328 0O 0
723 .655 .587 519 .27 O o]
.626 .559 .488 453 O c 0

Fi6. 7—Continued.

the thermal wave at & = 0.15 and & = 0.3 look like
those of one-dimensional thermal waves. It can be
observed from Fig. 7(b) that the incident thermal
shock has reached the right semi-infinite strip at
& =10.3. At & = 0.6, the thermal wave front reaches
the top and bottom surfaces of the right semi-infinite
strip, as shown in Fig. 7(c). However, in accordance
with the variation of temperature shown in Fig. 7(d),
the thermal waves have reflected from the top and
bottom surfaces of the right semi-infinite strip interact
with the propagation of the original thermal wave at
E=1.2.

CONCLUSIONS

The present study introduces an efficient numerical
method to analyze two-dimensional HHC problems
with irregular geometries. The major difficuity in the
numerical analysis of HHC problems is the sup-
pression of the numerical oscillations. As the thermal

waves propagate with a finite speed, jump discon-
tinuities will take place at the fronts of thermal wave
propagations or interactions. As shown in the present
results, the propagations, reflections and interac-
tions of two-dimensional thermal waves are much
more complicated than those of one-dimensional
thermal waves. Thus multi-dimensional HHC prob-
lems are much more difficult to solve than one-
dimensional problems. The present numerical scheme
involving the hybrid applications of the Laplace trans-
form technique and the control volume formulation
is employed. The application of the Laplace transform
technique can quickly give an accurate solution at a
specific time without step-by-step computations in the
time domain. This advantage can save the computing
time and can avoid undesirable numerical oscillations
due to a bad choice of time-step and space-step sizes.
The key of the present numerical scheme is the selec-
tion of the shape functions used in the control volume
formulation. Since the conventional bi-linear shape
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functions will produce severc numerical oscillations
in the numerical results, the bi-hyperbolic shape func-
tions cxtended {rom the one-dimensional hyperbolic
shape functions are used in the present study. It can be
found from various illustrated results that the present
numerical solutions do not reveal severe numerical
oscillations in the vieinity of jump discontinuitics.
This conclusion implies that the bi-hyperbolic shape
function shown in the present study can be a better
choice for the present mathematical formulation.
Moreover, the present method does not need to map
the (v, 1) coordinate system into the body-fitted co-
ordinate system and to consider the effect of the CFL
number on the numerical results.
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